https://zenodo.org/records/7686996

Theorem: The Riemann Hypothesis can be reworded to indicate that the real part of one half always balanced at the infinity tensor by stating that the Riemann zeta function has no more than an infinity tensor’s worth of zeros on the critical line. For something to be true in proof, it often requires an outside perspective. In other words, there must be some exterior, alternate perspective or system on or applied to the hypothesis from which the proof can be derived. Two perspectives, essentially must agree. Here, a fractal web with infinitesimal 3D strange attractor is theorized as present at the solutions to the Riemann Zeta function and in combination with the infinity tensor yields an abstract, mathematical object from which the rewording of the Riemann Zeta function can be derived. From the rewording, the law that mathematical sequences can be expressed in more concise and manageable forms is applied and the proof is manifested. The mathematical law that any mathematical sequence can be expressed in simpler and more concise terms: ∀s∃s,⊆s: ∀φ: s⊆φ ⇒ s,⊆φ, is the final key to the proof when comparing the real and imaginary parts.

Share This
Skip to content