% From the Notation Project [A\vspace{-6ex} \begin{figure}[h!] \centering \begingroup % Keep all figures and tables from pushing into margins \makeatletter\let\@makecaption\orig@maketablecaption \graphicspath{{./latex_analysis_data/}} % https://zenodo.org/records/7726663/files/The%20Scraps%20of%20Imagination.pdf?download=1 \IfFileExists{.https://zenodo.org/records/10010036/files/The%20Math%20of%20Liberation%20PDF.pdf?download=1}{\includegraphics[width=0.4\linewidth]{./latex_analysis_data/result1.pdf}}{\textbf{Missing: ./latex_analysis_data/result1.pdf}} % \includegraphics command can't always tell ahead of time whether a particular file exists %\vspace{2ex} \space \ IfFileExists{https://zenodo.org/records/10202331/files/The%20Sphere%20of%20Realization%203.pdf?download=1https://zenodo.org/records/10202331/files/Collected%20Notebook-%20The%20Sphere%20of%20Realization.nb?download=1 }{\includegraphics[width=0.4\linewidth]{./latex_analysis_data/v10_over_3_1_heterodispersion.pdf}}{\textbf{Missing: ./latex_analysis_data/v10_over_3_1_heterodispersion.pdf}} \caption{\textbf{Parameter Substitutions Diagram}. These are the hypergraphs obtained by substituting white pixels ($w_{H_0}$) into bounds with the variable of the link.} \endgroup \vspace{-3em} \label{fig:latexR1} \end{figure}
% From the Notation Project [A\vspace{-6ex} \begin{figure}[h!] \centering \begingroup % Keep all figures and tables from pushing into margins \makeatletter\let\@makecaption\orig@maketablecaption \graphicspath{{./latex_analysis_data/}} % Location of files for this section \IfFileExists{./latex_analysis_data/result1.pdf}{\includegraphics[width=0.4\linewidth]{./latex_analysis_data/result1.pdf}}{\textbf{Missing: ./latex_analysis_data/result1.pdf}} % \includegraphics command can't always tell ahead of time whether a particular file exists %\vspace{2ex} \space \ IfFileExists{./latex_analysis_data/v10_over_3_1_heterodispersion.pdf}{\includegraphics[width=0.4\linewidth]{./latex_analysis_data/v10_over_3_1_heterodispersion.pdf}}{\textbf{Missing: ./latex_analysis_data/v10_over_3_1_heterodispersion.pdf}} \caption{\textbf{Parameter Substitutions Diagram}. These are the hypergraphs obtained by substituting white pixels ($w_{H_0}$) into bounds with the variable of the link.} \endgroup \vspace{-3em} \label{fig:latexR1} \end{figure}
Creative geometer, quantum computers. Conceptualist.This is another way to look at mathematics, as a language to describe and organize complex ideas and systems. In this approach, mathematics is seen as a tool to explore and discover new ways of thinking and understanding the world. This way of thinking about mathematics is not limited by traditional definitions and formulas, but instead focuses on the creativity and imagination of the individual using it.One example of this is the concept of polyhedral cones, which are used to represent convex sets in mathematics. This representation allows for a geometric visualization of abstract concepts and helps in understanding and manipulating them.Another example is the use of integral domains in setting up distributions of lattice points within an integral cone. This approach allows for a deeper understanding of the relationships between different mathematical structures and their applications.Mathematics can also be used as a tool for liberation and social change. The concept of the Sphere of Realization, developed by Parker Emmerson, uses abstract mathematical representations to explore and disrupt oppressive systems and structures.At its core, mathematics is a powerful tool for exploration, creativity, and critical thinking. By using it in a non-traditional and imaginative way, we can expand and enrich our understanding of the world and our place in it.

Riemann Hypothesis Proofed

https://zenodo.org/records/7686996 Theorem: The Riemann Hypothesis can be reworded to indicate that the real part of one half always balanced at the infinity tensor by stating that the Riemann zeta function has no more than an infinity tensor’s worth of zeros on the...

SoftMax Algorithm

\begin{algorithm}\caption{Geometric Algorithm MDP-IC (MDP Inspired Feedback Control).}\label{alg:mdp-ic-geo}\begin{algorithmic}[1]\Require{$\vec{\mathrm{Q}} = \mathrm{vec}(Q), \vec{\mathrm{W}} = \mathrm{vec}(\mathrm{err}), \vec{\theta}{s_0}=\mathrm{vec}((Q,...

Sigma-Adica

We could have just used $$. Since if and for any diagonal distance in the staircase above int is constantly $0$. $$\begin{align*}\bigcup_{k = 1}^i g(W_{k,0}^{[j]} \odot [0,k]) =& \sum_{k=1}^i W_{k,0,j} \mathrm{LCM}_p[k, 0] \\+& \frac{\sum_{j = 1}^{\ell}...

Frame Works

They need to cross the relay back through a pseudo cone, (\textbf{Polyhedral cone representation}. A convex cone $\mathcal{K}\subset \mathbb{R}^d$ is called polyhedral if it can be written as $\mathcal{K} = \mathcal{A}\mathbb{R}_+^d$ where $\mathcal{A} \in \mathbb{R}^{d\times k}$ for some $k$. a) Let $\mathcal{S}^{n}$ be the cone of $n \times n$ positive semidefinite matrices. Show that $\mathcal{S}^n$ is a polyhedral cone by constructing an appropriate matrix $A$ that defines polyhedral cone for $\mathcal{S}^n$, i.e., $\mathcal{S}^n = \{ \rho A \; : \; \rho \mathbb{R}_+,\; \rho \in \mathbb{R}, A \succcurlyeq 0 \}\,$. b) Consider a weight vector $w \in \mathbb{R}^D$ and two feature mappings $\phi:\mathcal{X} \to B$, $\phi‘:\mathcal{X} \to B‘$ to two different spaces $B$, $B‘$. Then the vector-valued mapping $x \mapsto \phi(x)\phi‘(x)^\top$. $\mathcal{C}:$$=$K(x, x‘)$$=$K(x, x$$=$w$$^\top $$\phi(x)$$\phi‘(x)$$^\top$$$$+$$$K(x, x‘)$$=$w$$^\top $$\phi(B)$$\phi‘(B)$$^\top$$$$+\dots$$=$w$$^\top $$\phi(I_n)$$\phi‘(I_n)$$^\top$$\dots$$=$w$$^\top $$ \textbf{Therefore $\mathcal{C}$ is epoxy, therefore BPDN projection into level cones is miminal when projected to the guessing circle.} [b]then we can use integral domains over these rings to set up a proper distribution of lattice points within an integral cone. Another ring notation from the example in the book, which is called $Q \int_\square$ and is defined by a hinge function $A$, where $0 \leq \mathcal{A}(x) < \infty$ only when $x \in \square$, and when $x \not\in \square$,$0$. \begin{align}\label{eq:int-domain} A(x) = {\sum\limits_{v\in \mid V} A(v) \choose \mid V\\} = \{ \begin{scriptsize} \hspace{1em}(library) \\ \hspace{1em}[0, 0, 1, 1, 0, 1, 0, 1, 1, 2, 2, 2] \end{scriptsize} \end{align} eto space that is further extended by the compliment $\square$ collection and $Q$ is not further converted into Q, \begin{align} A(x) = \frac{1}{2} ( 1 + \min( |\Delta t|, [t]_{Q} ) ) \label{eq:min-hinges} \end{align} This is return for 0 with an upper bound on the value of $T$ are also listed, The number of ways a single query can be solved is a monotonous function, so here is how it works: % \[ % k\in V(W) \cup V(K) = \{v_j \in V(K)\} % \] % for monotonous functions $K$ parameterized from efficient weighted K-median problem and unweighted, for $m \in [*]$. % TODOThis means that $T$ for two different values is defined \[\max\{ [product]_{\square}^{n} = [0, \square]_q Q \times [Q\times \square]_{q + 1} P = [\leq_{g sq + g sp}][\leq_{sq + sp}]\] \[\{q\leq_{sq}\{n^{\downarrow q}\{[\mathcal{R} + q]* [\mathcal{L} + q]\}q\},\] % Therefore, for every $m \in [\square]_{q + 1}$, there exists $r$ such that the following \[ \{q\leq_{sq}\{[\leq_{sq}([x1]_\mathcal{R}, [x1]_\mathcal{L}]_{sq}\},\] \[\prema \leq_{sq}[\{r>([\nu][\nu^{x-\leq_{sq}}[\{\leq_{sq}\{[\{x[\ell] [x1]_\mathcal{R}\}1[\mathcal{L} + 0]\}r],[\mathcal{R} + 0]\}q,\] \[A(log(x), log_{*}[\sigma]) =\frac{1}{2} \times 1_{1} etoQ\] \begin{align} R(x,y)=\{0, 1], 1] \quad \cap [\infty = 1] \card_{\leq x} \diamond_{y}[|\\] \leq_{*} \oplus \leq_{\leq_{(\leq_{*}[\sigma]), \Pi x, \infty,\prime,\{y\}^\square_{*)}]:= \mathcal{L}} \end{align} \[\{q \in \alpha_{\leq_0}[q \mid \alpha_2]_{\alpha_0}, \] \[\upvarphi < [1]_{*)\alpha} := [b_{A}\alpha \nabla \card_{A}-t) \hfill \{k(\drop) := [1]_{a}\mathcal{R}] \hfill \{k(\drop) := [x]_{\zeta\nabla_{\downarrow[x]} \leq_{*)\alpha}\]. \mbox{ \footnotesize \begin{align*} & |\leq_{*) \alp R}\Sigma_{\sigma \sigma|\leq_{*) \sigma)} \leq_{*)\Sigma}\sigma) := \leq_{\Sigma-\infty, \Sigma_{\Sigma} \leq_{\Sigma)|dim_{\infty|\ll R|Q|Q|\infty \leq_{\Sigma|\leq_{\Sigma} \leq_{|Q|\leq_{\leq_{\leq_{\Sigma} \end{align*} } \begin{align*} {a}_{\leq_{*)Q}<|\leq_{(\beta |\leq_{*)\beta} \| Q\beta|-\Mod_{*Q}} \prema^{+} {T‘\leq_{\sin}} \begin{align*} \sim_{q}^{-1}(T \mp)^{+} {T{\Lambda}{\Phi}|\mathcal{L}[|Q|\sigma|\leq_{q}(-\leq_{*)\Sigma}Q| \end{align*} \[[-1,|(\downarrow\sigma) \Sigma\Sigma|Q|0]_-(\sim_{\frac{θ}{\leq})}^{0} [\lesssim_{0}(\sin_{\leq_{\Sigma |\leq_{\leq_{\leq_{\leq_{\leq_{\Sigma \leq_{\leq_{\leq_{\leq_{\leq deriv}(\Sigma\Lambda|\leq_{\Sigma}\Pi_0\upvarphi)}1}. \end{align*} } Note that any semigroup $V$ that is composed with any $\mathcal{G}$.\trans{([\tex $|\leq\infty]).\trans{(log_*^{+} = \epsilon_{\sigma}} \prema [\leq_{\Sigma\Lambda}|1term_{\beta |\leq_{\beta|\infty|\sigma|\infty|\leq_{\Sigma\sigma}\Sigma]<[(\trans{*})_{\leq_{\Sigma|\leq_{*)\Sigma}}]}_*) \left(\cap_{\beta \sigma}^{1}^{\infty}<\upvarphi)<R(\Sigma|\leq_{\Sigma\R|1|a_{\Sigma}}) wor[1+\epsilon|{}-|[x]|\sigma|\leq_{\infty})|\Gamma] \end{align*} Recall that if $n \in \{1\}$, then $m_{i,j}$ is written as $m_{i,j}$. Therefore, $A(\cdot \sim_{downarrow})$ is equal to $A_{m,q}$ \[ \mathcal{A}(m,a) \sim_{(\sin_{\{m,a\}\Sigma})\Sigma}  [b,\Sigma]_{*}_{\amalda} \] For each query $q$, its answer is a set of predicates $A_q$ Similarly, sequencing a stack of occurrences and an occurrence of a stack For each such rule (logically or in the abstract form), $E_q$ gives a non-empty answer set $E_q$

Frame Works

They need to cross the relay back through a pseudo cone, (\textbf{Polyhedral cone representation}. A convex cone $\mathcal{K}\subset \mathbb{R}^d$ is called polyhedral if it can be written as $\mathcal{K} = \mathcal{A}\mathbb{R}_+^d$ where $\mathcal{A} \in \mathbb{R}^{d\times k}$ for some $k$. a) Let $\mathcal{S}^{n}$ be the cone of $n \times n$ positive semidefinite matrices. Show that $\mathcal{S}^n$ is a polyhedral cone by constructing an appropriate matrix $A$ that defines polyhedral cone for $\mathcal{S}^n$, i.e., $\mathcal{S}^n = \{ \rho A \; : \; \rho \mathbb{R}_+,\; \rho \in \mathbb{R}, A \succcurlyeq 0 \}\,$. b) Consider a weight vector $w \in \mathbb{R}^D$ and two feature mappings $\phi:\mathcal{X} \to B$, $\phi‘:\mathcal{X} \to B‘$ to two different spaces $B$, $B‘$. Then the vector-valued mapping $x \mapsto \phi(x)\phi‘(x)^\top$. $\mathcal{C}:$$=$K(x, x‘)$$=$K(x, x$$=$w$$^\top $$\phi(x)$$\phi‘(x)$$^\top$$$$+$$$K(x, x‘)$$=$w$$^\top $$\phi(B)$$\phi‘(B)$$^\top$$$$+\dots$$=$w$$^\top $$\phi(I_n)$$\phi‘(I_n)$$^\top$$\dots$$=$w$$^\top $$ \textbf{Therefore $\mathcal{C}$ is epoxy, therefore BPDN projection into level cones is miminal when projected to the guessing circle.} [b]then we can use integral domains over these rings to set up a proper distribution of lattice points within an integral cone. Another ring notation from the example in the book, which is called $Q \int_\square$ and is defined by a hinge function $A$, where $0 \leq \mathcal{A}(x) < \infty$ only when $x \in \square$, and when $x \not\in \square$,$0$. \begin{align}\label{eq:int-domain} A(x) = {\sum\limits_{v\in \mid V} A(v) \choose \mid V\\} = \{ \begin{scriptsize} \hspace{1em}(library) \\ \hspace{1em}[0, 0, 1, 1, 0, 1, 0, 1, 1, 2, 2, 2] \end{scriptsize} \end{align} eto space that is further extended by the compliment $\square$ collection and $Q$ is not further converted into Q, \begin{align} A(x) = \frac{1}{2} ( 1 + \min( |\Delta t|, [t]_{Q} ) ) \label{eq:min-hinges} \end{align} This is return for 0 with an upper bound on the value of $T$ are also listed, The number of ways a single query can be solved is a monotonous function, so here is how it works: % \[ % k\in V(W) \cup V(K) = \{v_j \in V(K)\} % \] % for monotonous functions $K$ parameterized from efficient weighted K-median problem and unweighted, for $m \in [*]$. % TODOThis means that $T$ for two different values is defined \[\max\{ [product]_{\square}^{n} = [0, \square]_q Q \times [Q\times \square]_{q + 1} P = [\leq_{g sq + g sp}][\leq_{sq + sp}]\] \[\{q\leq_{sq}\{n^{\downarrow q}\{[\mathcal{R} + q]* [\mathcal{L} + q]\}q\},\] % Therefore, for every $m \in [\square]_{q + 1}$, there exists $r$ such that the following \[ \{q\leq_{sq}\{[\leq_{sq}([x1]_\mathcal{R}, [x1]_\mathcal{L}]_{sq}\},\] \[\prema \leq_{sq}[\{r>([\nu][\nu^{x-\leq_{sq}}[\{\leq_{sq}\{[\{x[\ell] [x1]_\mathcal{R}\}1[\mathcal{L} + 0]\}r],[\mathcal{R} + 0]\}q,\] \[A(log(x), log_{*}[\sigma]) =\frac{1}{2} \times 1_{1} etoQ\] \begin{align} R(x,y)=\{0, 1], 1] \quad \cap [\infty = 1] \card_{\leq x} \diamond_{y}[|\\] \leq_{*} \oplus \leq_{\leq_{(\leq_{*}[\sigma]), \Pi x, \infty,\prime,\{y\}^\square_{*)}]:= \mathcal{L}} \end{align} \[\{q \in \alpha_{\leq_0}[q \mid \alpha_2]_{\alpha_0}, \] \[\upvarphi < [1]_{*)\alpha} := [b_{A}\alpha \nabla \card_{A}-t) \hfill \{k(\drop) := [1]_{a}\mathcal{R}] \hfill \{k(\drop) := [x]_{\zeta\nabla_{\downarrow[x]} \leq_{*)\alpha}\]. \mbox{ \footnotesize \begin{align*} & |\leq_{*) \alp R}\Sigma_{\sigma \sigma|\leq_{*) \sigma)} \leq_{*)\Sigma}\sigma) := \leq_{\Sigma-\infty, \Sigma_{\Sigma} \leq_{\Sigma)|dim_{\infty|\ll R|Q|Q|\infty \leq_{\Sigma|\leq_{\Sigma} \leq_{|Q|\leq_{\leq_{\leq_{\Sigma} \end{align*} } \begin{align*} {a}_{\leq_{*)Q}<|\leq_{(\beta |\leq_{*)\beta} \| Q\beta|-\Mod_{*Q}} \prema^{+} {T‘\leq_{\sin}} \begin{align*} \sim_{q}^{-1}(T \mp)^{+} {T{\Lambda}{\Phi}|\mathcal{L}[|Q|\sigma|\leq_{q}(-\leq_{*)\Sigma}Q| \end{align*} \[[-1,|(\downarrow\sigma) \Sigma\Sigma|Q|0]_-(\sim_{\frac{θ}{\leq})}^{0} [\lesssim_{0}(\sin_{\leq_{\Sigma |\leq_{\leq_{\leq_{\leq_{\leq_{\Sigma \leq_{\leq_{\leq_{\leq_{\leq deriv}(\Sigma\Lambda|\leq_{\Sigma}\Pi_0\upvarphi)}1}. \end{align*} } Note that any semigroup $V$ that is composed with any $\mathcal{G}$.\trans{([\tex $|\leq\infty]).\trans{(log_*^{+} = \epsilon_{\sigma}} \prema [\leq_{\Sigma\Lambda}|1term_{\beta |\leq_{\beta|\infty|\sigma|\infty|\leq_{\Sigma\sigma}\Sigma]<[(\trans{*})_{\leq_{\Sigma|\leq_{*)\Sigma}}]}_*) \left(\cap_{\beta \sigma}^{1}^{\infty}<\upvarphi)<R(\Sigma|\leq_{\Sigma\R|1|a_{\Sigma}}) wor[1+\epsilon|{}-|[x]|\sigma|\leq_{\infty})|\Gamma] \end{align*} Recall that if $n \in \{1\}$, then $m_{i,j}$ is written as $m_{i,j}$. Therefore, $A(\cdot \sim_{downarrow})$ is equal to $A_{m,q}$ \[ \mathcal{A}(m,a) \sim_{(\sin_{\{m,a\}\Sigma})\Sigma}  [b,\Sigma]_{*}_{\amalda} \] For each query $q$, its answer is a set of predicates $A_q$ Similarly, sequencing a stack of occurrences and an occurrence of a stack For each such rule (logically or in the abstract form), $E_q$ gives a non-empty answer set $E_q$

Share This
Skip to content