We could have just used $$. Since if and for any diagonal distance in the staircase above int is constantly $0$. $$ \begin{align*} \bigcup_{k = 1}^i g(W_{k,0}^{[j]} \odot [0,k]) =& \sum_{k=1}^i W_{k,0,j} \mathrm{LCM}_p[k, 0] \\ +& \frac{\sum_{j = 1}^{\ell} \mathrm{LCM}_{p}[\mathrm{LCM}_{p}[\bigvee_{k=1}^n J_{k,\ell}(\ell) \bigwedge_{p=1}^{m} (\bigvee_{k=1}^n J_{pq,\ell}(\ell))]]}{ \mathrm{deg}_{p} \cdot h_{k,m}} \Big( \quad \ \mathrm{dist}^{-4} \Big) \end{align*} $$$$ V_{-1,i} = X_{i+1} \bowtie X_{i+3} \vee X_{i+4}^2 \leq 1 - X_{i+5}^2 \vee X_{i+6}^1 $$ $$ \bigcup_{k = 1}^i X_{k+3}^{[j]} \leq_{\epsilon_{p+1}} X_{k+1}^{[j+1]} \; $$$$ \bigcup_{k = 1}^i X_{k+2}^{[j]} \leq_{\epsilon_{p+1}} X_{k+2}^{[j+1]} \; $$$$ \bigcup_{k = 1}^i X_{k+1}^{[j]} \leq_{\epsilon_{p+1}} X_{k+3}^{[j+1]} \; $$Now, as mentioned before, this view of $C(d)$ in terms of graphs is not the only way of viewing the DPF, as by some lectures given to me by Sreenath (after many correspondence back and forth with Nadav Mato) it is possible to see the DPF in terms of a reduced version of the DPF in the following more structured form:$$ \begin{aligned} C(d) &\cong \bigoplus_{i < d} \bigoplus_{q = 2}^{d} \oplus_{p = 1}^{d} \bigoplus_{n = 1}^{d} \|_{(e) \ \mathrm{d} \ M \bigoplus_{j = 1}^{p} \oplus_{l = 1}^{d} \bigoplus_{k = 1}^{\infty} \bigoplus_{j = 1}^{\infty}\bigoplus_{n = 1}^{d} (\mathbf{X}[k]_{i,3} \oplus \oplus_{l = 1}^{\infty} \bigoplus_{p = 1}^{d} (\mathbf{T_{m+1}_1}[k] \odot \mathbf{X}_{k+1}[l]) + p_{1,i+3} \odot Y_{\pi_1[i^+ l^h]})\odot \\ & \left[ \begin{pmatrix} 1 & 0 & 0 & - \mathbf{P}_1[^-J\newmoon_0^{\otimes k}] & - \mathbf{P}_2[^-J\newmoon_1^{\otimes k}] & - \mathbf{P}_3[^-J\newmoon_1^{\otimes k}] & 0 \\ 0 & 1 & 0 & - \mathbf{P}_1[^-J\newmoon_0^{\otimes k}] & \mathbf{P}_2[^-J\newmoon_1^{\otimes k}] & 0 & \mathbf{P}_3[^-J\newmoon_2^{\otimes k}] \\ 0 & 0 & 1 & 0 & - \mathbf{P}_2[^-J\newmoon_1^{\otimes k}] & 0 & \mathbf{P}_4[^-J\newmoon_3^{\otimes k}] \\ 0 & 0 & 0 & 1 & 0 & 0 & \mathbf{P}_5[^-J\newmoon_0^{\otimes k}] \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{pmatrix} \right] \end{aligned} $$$$ \begin{aligned} & 0 \Big) + \\ & \Big( \left[ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right] \oplus \cdots \oplus \left[ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right] \right) \end{aligned} $$Note that this DPF is parame\rise::\_ etrised wrt a certain primorial sequence, with $\mathbf{P}_3 = P_1 \sqcup \epsilon \delta k \mathrm{Dlog} log |\mathrm{d}_{\overline{\text{norm}}}^3|^{\varepsilon^{n+6}}$.

Share This
Skip to content